Thursday 20 February

11.00-11.10 Introductory Remarks
11.10-11.50 Learning variational regularisations with optimal error estimates
Martin Benning
University College London
11.50-12.30 A bilevel framework for variational image reconstruction with learned convex regularisers
Hok Shing Wong
University of Bath
12.30-13.30 Lunch
13.30-14.10 Conformal-prediction-based error quantification for image reconstruction with learned priors
Martin Holler
University of Graz
14.10-14.50 Plug-and-play flow matching for regularization
Paul Hagemann
Technische Universität Berlin
14.50-15.30 UNSURE: Unknown noise level Stein's unbiased risk estimator
Julian Tachella
Ecole Normale Supérieure de Lyon
15.30-16.00 Coffee
16.00-16.40 Bayesian model comparison with learned data-driven priors
Jason McEwen
University College London
16.40- 17.40 Lightning Talks
Bernadin Tamo Amougou: SURE-based self-supervised conformal prediction for uncertainty quantification in imaging inverse problems
Ander Biguri: Benchmarking learned regularizers on real lab-based CT datasets
Mohammad Sadegh Salehi: Inexact algorithms for bilevel learning
Alexandra Valavanis: Inversion of residual neural networks

Friday 21 February

9.00-9.40 Iterative refinement of data-adaptive regularization
Sebastian Neumayer
Technische Universität Chemnitz
9.40-10.20 Practical operator sketching framework for accelerating iterative data-driven solutions in inverse problems
Billy Junqi Tang
University of Birmingham
10.20-10.40 Coffee & Tea Break
10.40-11.20 Proximal operator learning meets unrolling for limited angle tomography
Tatiana Bubba
University of Ferrara
11.20-12.00 Tackling fundamental challenges in hypothesis testing in imaging inverse problems
Marcelo Pereyra
Heriot-Watt University
12.00-13.00 Lunch
13.00-13.40 Embedding Blake-Zisserman regularization in unfolded proximal neural networks for enhanced edge detection
Nelly Pustelnik
Ecole Normale Supérieure de Lyon
13.40-14.20 Plug-and-play half-quadratic splitting for ptychography
Johannes Hertrich
Université Paris Dauphine-PSL